

I C2MOS **Serial Output 12-Bit ADC**

FEATURES

12-Bit Resolution and Accuracy Fast Conversion Time: 10µs

Serial Output

Complete with On-Chip Reference

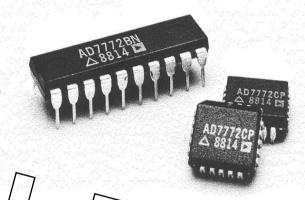
Low Power

Unipolar or Bipolar Input Ranges

Small 9.3", 20-Pin DIPs and 20-Terminal Surface

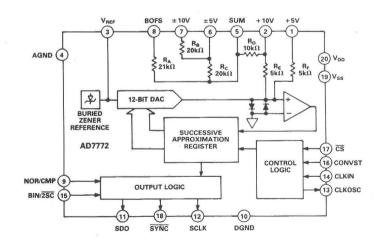
Mount Package

The AD7772 is a complete 12-bit ADC that offers high speed performance combined with low, CMOS power levels. It use an accurate high speed DAC and comparator in a successive approximation loop to achieve a fast conversion time. An on-chip buried Zener diode provides a stable reference voltage to give low drift performance over the full temperature lange, and the specified accuracy is achieved without any user trims. The can be configured to have analog input ranges of 0 to +10V, $\pm 5V$ or $\pm 10V$.


An on-chip clock circuit is provided, which may be used with a crystal for stand-alone operation. Alternatively, the clock input may be driven from an external clock source such as a divided-down microprocessor clock.

The AD7772 serial interface is compatible with digital signal processors such as the TMS32020, µPD7720 and DSP56000. It can also be used with general purpose serial to parallel converters such as shift registers. The device outputs the conversion result with one leading zero and the twelve data bits following. When using the AD7772 at top speed (CLKIN = 1.28MHz) with a 3µs sample-and-hold amplifier like the AD585, it is possible to achieve throughput rates of 76kHz. With this 76kHz sample rate signals with spectral contents up to 38kHz can be digitized.

The AD7772 is fabricated in Analog Devices Linear Compatible CMOS process (LC2MOS), an advanced, all ion-implanted process that combines fast CMOS logic and linear, bipolar circuits on a single chip, thus achieving excellent linear performance while still retaining low CMOS power levels.


PRODUCT HIGHLIGHTS

- 1. Fast, 10µs conversion time makes the AD7772 ideal for a wide range of applications in telecommunications, sonar and radar signal processing and industrial data acquisition systems requiring optical isolation.
- 2. Where space saving is important, the small package and serial interface of the AD7772 minimize the amount of board space needed to realize 12-bit data acquisition.

interface or the AD7772 makes it simple e versatile serial interface to the serial ports of DSPs as wel microprocessor systems.

- On-chip buried Zener reference has temperature doefficient as low as 25ppm C, giving low full-scale drift over the operating temperature range.
- 5. Stable DAC and comparator give excellent linearity and low zero error over the full temperature range.
- 6. LC²MOS circuitry gives low power drain (135mW) from +5V, -15V supplies.

Functional Block Diagram

SPECIFICATIONS ($V_{DD}=+5V~\pm5\%$, $V_{SS}=-15V~\pm5\%$, $f_{CLK}=1.28$ MHz. All Specifications T_{min} to T_{max} unless otherwise noted.)

Parameter	K, B Versions ¹	L Version1	C Version ¹	Units	Test Conditions/Comments
ACCURACY				1	
Resolution	12	12	12	Bits	
	±1	± 1/2	± 1/2	LSB max	Tested Barress One 1 5V
Integral Nonlinearity @ 25°C	10.000000			LSB max	Tested Range: 0 to +5V
T _{min} to T _{max}	± 1	± 1/2	± 3/4		
Differential Nonlinearity	± 1	±1	±1	LSB max	No Missing Codes Guaranteed T _{min} to T _{max}
Unipolar Offset Error @ +25°C	± 8	±4	±4	LSB max	Input Range: 0 to 5V or 0 to 10V
T_{min} to T_{max}	± 8	±4	±4	LSB max	Typical TC is 2ppm/°C
Unipolar Full Scale Error ² @ +25°C	± 15	± 10	±10	LSB max	Input Range: 0 to 5V or 0 to 10V
Bipolar Zero Error @ +25°C	±9	±5	±5	LSB max	Input Range: ±5V or ±10V
T_{\min} to T_{\max}	± 15	±9	±9	LSB max	
Bipolar Full Scale Error ² @ +25°C	± 10	±7	±7	LSB max	Input Range: ±5V or ±10V
Full Scale TC ^{3,4}	± 45	±35	± 35	ppm/°C max	input range. = 5 t of = 10 t
ANALOGINPUTS	1 - 17	+	+	ppin Cinax	
Input Ranges					
	0	0	05	Volts	
Unipolar	0 to +5	0 to +5	0 to +5		
CONTRACTOR OF THE CONTRACTOR O	0 to +10	0 to + 10	0 to +10	Volts	
Bipolar	-5 to +5	-5 to +5	-5 to +5	Volts	
	-10 to +10	-10 to + 10	-10 to + 10	Volts	
Input Current	1 1999				
Unipolar	3	3	3	mA max	Input Range: 0 to 5V or 0 to 10V
Bipolar	± 0.4	±0.4	±0.4	mA max	Input Range: ±5V to ±10V
NTERNAL REFERENCE VOLTAGE					
V _{REF} Output @ + 25°C	-5.2/-5.3	-5.2/-5.3	-5.2/-5.3	V _{min} /V _{max}	$-5.25V \pm 1\%$
V _{REF} Output TC	+40	± 25	± 25	ppm/°C typ	**************************************
Output Current Sirk Capability ⁵	550	550	550	μA max	(External Load Should Not Change During Conversi
POWER SUPPLY REJECTION		-	-		
	((-1/2)	10	± 1/2	LSB typ	FS Change, $V_{SS} = -15V$
V _{DD} Only		21/2	± 1/2	LSB typ	
				Y CD	$V_{DD} = +4.75V \text{ to } +5.25V$
V _{SS} Only	±1/2	±//2	± 1/2	LSB typ	FS Change, $V_{DD} = +5V$
					$V_{SS} = -14.25 \text{V to} - 15.75 \text{V}$
LOGIC INPUTS	$\setminus \bigcup II$				
CS, NOR/CMP, BIN/2SC		\ /	1 / / /	1 /	\sim \sim
CONVST, CLKIN			1/ / /	1 / /	
V _{INL} , Input Low Voltage	+0.8	+0.8	+0.8	V max	$V_{100} = 5V \pm 5\%$
V _{INH} , Input High Voltage	+2.4		+2.4	V min	
C _{IN} ⁵ , Input Capacitance	10	10	10	pF max	
	10	10	10	Dr max	·
CS, NOR/CMP, BIN/2SC				\perp / \mid \perp	
CONVST				1	
I _{IN} , Input Current	± 10	± 10	± 10	μA max	$V_{IN} = 0$ to V_{DD}
CLKIN					
I _{IN} , Input Current	± 20	± 20	± 20	μA max	$V_{IN} = 0 \text{ to } V_{DD}$
OGIC OUTPUTS				1	
SDO, SCLK, CLKOSC, SYNC			İ		
V _{OL} , Output Low Voltage	+0.4	+0.4	+0.4	V max	I _{SINK} = 1.6mA
V _{OH} , Output High Voltage	+4.0	+4.0	+4.0	V min	$I_{\text{SOURCE}} = 200 \mu \text{A}$
Floating State Leakage Current	± 10	± 10	± 10	μA max	ISOURCE - LOOPIT
SDO	± 10	± 10	- 10	μл шах	
Floating State Output Capacitance ⁵	15	15	15	n E may	
		-	-	pF max	6 130MW 6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ONVERSION TIME	10.2	10.2	10.2	μs max	$f_{CLK} = 1.28$ MHz. See Control Inputs Synchronization
OWER REQUIREMENTS					
V_{DD}	+5	+5	+5	VNOM	± 5% for Specified Performance
V_{SS}	- 15	-15	- 15	VNOM	± 5% for Specified Performance
I _{DD} ⁶	7	7	7	mA max	$\overline{\text{CS}} = \text{CONVST} = \text{V}_{\text{DD}}, \text{AIN} = 5\text{V}$
I _{DD} 6 I _{SS} 6	12	12	12	mA max	$\overline{CS} = CONVST = V_{DD}, AIN = 5V$
Power Dissipation	135	135	135	mW typ	July 1
- Dissipation	215	215	215	mW max	
	413	(41)	: 412	i iii w iiiax	

NOTES

¹Temperature range as follows: K, L versions: 0 to +70°C

B, C versions: -25°C to +85°C

B, C versions: -25°C to $+85^{\circ}\text{C}$ ²Includes internal voltage reference error.

³Full Scale TC = \triangle FS/ \triangle T, where \triangle FS is Full Scale change from $T_A = +25^{\circ}\text{C}$ to T_{min} or T_{max} .

⁴Includes internal voltage reference drift.

⁵Sample tested to ensure compliance.

⁶Power supply current is measured when AD7772 is inactive, i.e., $\overline{\text{CS}} = \text{CONVST} = \overline{\text{SYNC}} = \text{HIGH}$.

Specifications subject to change without notice.

TIMING CHARACTERISTICS 1 ($v_{dd} = +5v$, $v_{ss} = -15v$)

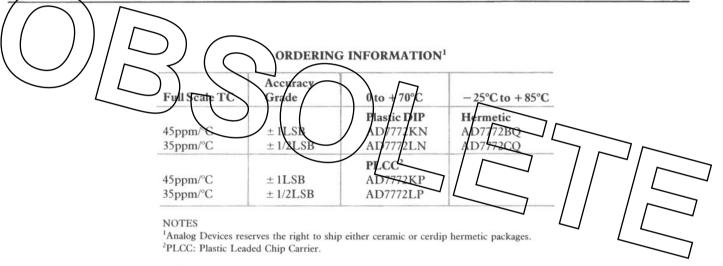
Parameter	Limit at + 25°C (All Grades)	Limit at T _{min} , T _{max} (K, L, B, C Grades)	Units	Conditions/Comments
t ₁ ²	780	780	ns min	CLKIN Cycle Time
t ₂	40	50	ns max	Propagation Delay between CLKIN and CLKOSC
t ₃	545	560	ns max	Propagation Delay between CLKIN and SCLK
t ₄ ³	780	780	ns min	SCLK Cycle Time
t ₅	45	45	ns min	
t ₆ ³	0	0	ns min	CS to SYNC Hold Time
t ₇	40	50	ns min	CONVST Pulse Width
t ₈	50	50	ns max	
t ₉	60	65	ns max	
t ₁₀ *	50	50	ns max	
4	100	125	ns max	$SCLK_{\bullet}$ to $SDO $ Delay, $C_L = 100pF$
1	115	145	ns max	
	190	235	ns max	$SCLK_{\bullet}$ to Data Valid, $C_L = 100pF$
1/2	\\ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	10	ns min	SCLK to SDO High Impedance
	65	80	ns max	
tr = tt = 5pt CLKIN Mark/S 3SCLK and SYI 4t ₁₀ and t ₁₁ are r 5t ₁₂ is defined as Specifications su +5V SCLK, SYNC 3kΩ	(10% to 90% of 15V) a Space Ratio Range is 55 sto Care loaded with the load in the incasured with the load in the time required for the bject to change without the stop of th	circuit of Figure 1. circuit of Figure 2 and defined a he data lines to change 0.1V who notice.	s the time requented by the state of the st	the circuit of Figure 3. A specific property of the circuit of Figure 3. A specific
	CLKIN CLKOSC			• t ₂
	SCLKt3	13 1 t ₄		
	cs —	t ₅ t ₇ t ₇ t ₇ t ₇ t ₈	1 1	5V 0V
C	SYNC	-ts	1 1 1	5V 0V
	SDO HIGH IMP	PEDANCE t ₁₀	1 t t 11	HIGH IMPEDANCE

Figure 4. AD7772 Timing Diagram.

ABSOLUTE MAXIMUM RATINGS*

 $(T_A = +25^{\circ}C \text{ unless otherwise noted})$

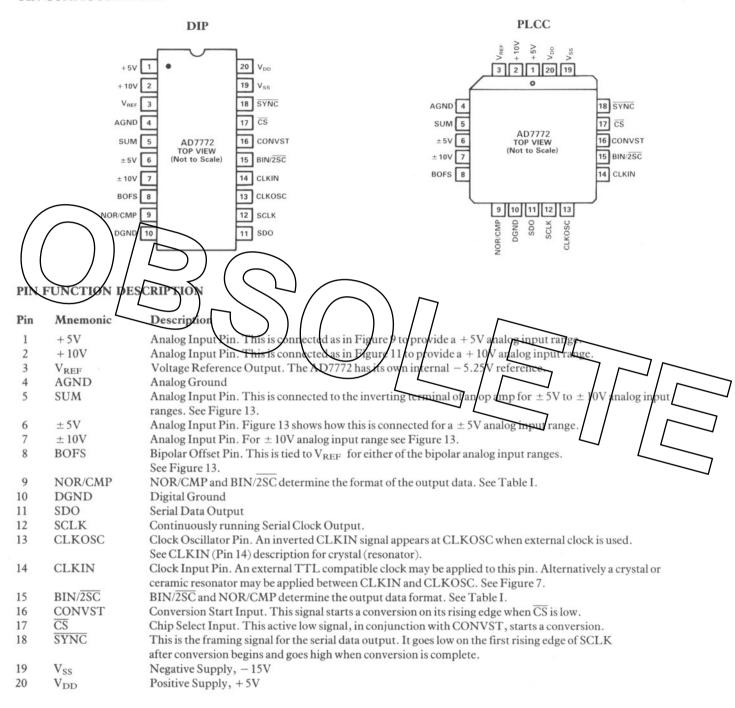
V_{DD} to DGND $\ \ldots \ \ldots \ \ldots \ -0.3V$ to $+7V$
V_{SS} to DGND
AGND to DGND $-0.3V$ to V_{DD} $+0.3V$
Analog Input Voltage to AGND
(BOFS, $\pm 10V$, $\pm 5V$, SUM,
+10V, +5V)15V to +15V
Digital Input Voltage to DGND
$(CLKIN, \overline{CS}, CONVST, NOR/CMP,$
$BIN/\overline{2SC}$)0.3V to V_{DD} +0.3V
Digital Output Voltage to DGND
(SDO, SCLK, $\overline{\text{SYNC}}$, CKOSC) -0.3V to $V_{DD} + 0.3\text{V}$


Operating Temperature Range

*Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one Absolute Maximum Rating may be applied at any one time.

CAUTION: _

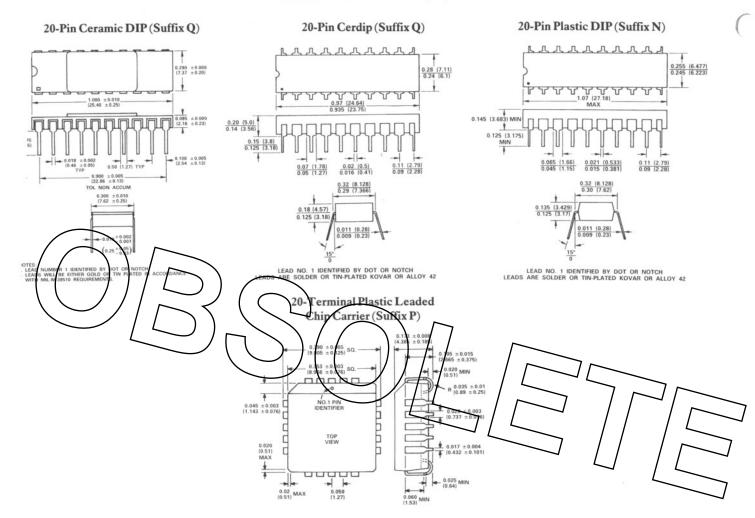
ESD (Electro-Static-Discharge) sensitive device. The digital control inputs are diode protected; however, permanent damage may occur on unconnected devices subjected to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The foam should be discharged to the destination socket before devices are removed.



PRICING U.S. 100+

AD7772KN \$35.00 AD7772BQ \$40.00 AD7772LN \$40.00 AD7772KP \$40.00 AD7772LP \$46.00

PIN CONFIGURATIONS



NOR/CMP BIN/2SC		Unipolar Data Format	Bipolar Data Format		
0	0	2s Complement	Complementary 2s Complement		
0	1	Straight Binary	Complementary Offset Binary		
1	0	Complementary 2s Complement	2s Complement		
1	1	Complementary Binary	Offset Binary		

Table I. AD7772 Output Coding

MECHANICAL INFORMATION OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

TERMINOLOGY

LEAST SIGNIFICANT BIT

An ADC with 12-bit resolution can resolve one part in 2^{12} (1/4096 of full scale). For the AD7772 operating in the 0 to +5V range, 1LSB is 1.22mV.

NO MISSING CODES

A specification which guarantees no missing codes requires that every code combination appear in a monotonic increasing sequence as the analog input level is increased. Thus every code must have a finite width. For all grades of the AD7772, all 4096 codes are present over the entire operating temperature ranges.

UNIPOLAR OFFSET ERROR

For the unipolar analog input range, the first transition should occur at a level 1/2LSB above AGND. Unipolar offset error is defined as the deviation of the actual transition from that point. This error can be adjusted as explained further on in this data sheet.

BIPOLAR ZERO ERROR

In the bipolar analog input ranges, bipolar zero is defined as the middle of code 2048. Bipolar zero error is the actual deviation from that point. The circuit diagram on page 9 shows how to adjust this.

UNIPOLAR FULL SCALE ERROR

The last transition in the ADC (from 111 . . .110 to 111 . . .111 when using straight binary coding) should occur for an analog value 1 1/2LSB below the nominal full scale (4.99816 for 5.000 volts full scale). The full scale error is the deviation of the actual level at the last transition from the ideal level with unipolar offset error adjusted to zero. This error can be trimmed out as shown in Figure 12. The temperature coefficients for each grade indicate the maximum change in the full scale gain from the initial value using the internal -5.25 volts reference.

BIPOLAR FULL SCALE ERROR

In the bipolar mode, the ADC has a positive full scale error and a negative full scale error. Positive full scale error is the deviation of the actual level at the last transition from the ideal level, with bipolar zero error adjusted to zero. Negative full scale error is the deviation of the actual level at the first transition from the ideal level, with bipolar zero error adjusted to zero. Full scale error is defined as either positive full scale error or negative full scale error, whichever is largest.

CIRCUIT INFORMATION

CONVERTER DETAILS

Conversion start on the AD7772 is controlled by the \overline{CS} and CONVST inputs. Figure 5 shows the operating signals of interest. With \overline{CS} held permanently low, a positive-going edge on CONVST starts the conversion cycle. The successive approximation register (SAR) is reset at this stage. On the next rising edge of SCLK, the \overline{SYNC} output goes low and the three-state data output (SDO) is enabled.

During conversion, the internal 12-bit DAC is sequenced by the SAR from the most significant bit (MSB) to the least significant bit (LSB). Bit decisions are made by the comparator (zero crossing detector) which checks the addition of each successive weighted bit from the DAC output against the analog input. The MSB decision is made and latched to the serial data output 90ns after the second rising edge of SCLK following the onversion start. Similarly, the succeeding bit decisions are made and latched approximately 90ns after the SCLK rising complete, the SDO output is latched edges. W hen conversion is SYNC output goes high the high i mp dance state and the SCLK CONVST 13 CLOCK CYC SYNC → **1** 90ns SDO DB11)DB10 HIGH-7 DB0 HIGH-Z

Figure 5. Operating Waveforms Using an External Clock Source for CLKIN

CONTROL INPUTS SYNCHRONIZATION

Conversion time for the AD7772 is defined as the time for which the SYNC output is low. This is always 13 clock cycles. However, there is a delay between CONVST going high and SYNC going low. Without synchronization this delay can vary from zero to an entire clock period. If a constant delay is required here, then the following approach can be used: when starting a conversion CONVST must go high on either the rising edge of CLKIN or the falling edge of CLKOSC.

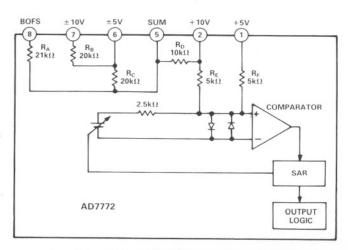
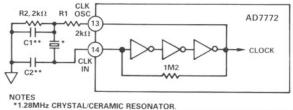


Figure 6. AD7772 Analog Input Stage

DRIVING THE ANALOG INPUT


Figure 6 shows the analog input stage for the AD7772. There are four application resistors ($R_A,\,R_B,\,R_C$ and R_D). These can be used with one external op amp to implement $\pm\,5V$ and $\pm\,10V$ analog input ranges. R_A is always connected to V_{REF} for these ranges and offsets the input signal by $+\,2.5V.\,R_C$ and R_D provide an attenuation of 2 for the $\pm\,5V$ input while $R_B,\,R_C$ and R_D attenuate the $\pm\,10V$ input by 4. The external op amp is connected as an inverting amplifier with its output driving Pins 1 and 2 and R_D as the feedback resistor. Figure 13 shows the circuit configuration.

The +5V and +10V inputs on the AD7772 connect to the comparator input via the $5k\Omega$ resistors $R_{\rm E}$ and $R_{\rm F}$. The DAC which has $2.5k\Omega$ output impedance also connects to this point. During conversion, current from the analog input is modulated by the DAC output current at a rate equal to the CLKIN frequency (1.28MHz maximum). This causes voltage spikes (glitches) to appear at the analog input. The magnitude and settling time of these glitches depends on the open-loop output impedance and small signal bandwidth of the amplifier or sample-and-hold driving the input. These devices must have sufficient drive to ensure that the glitches have settled within one clock period. An example of a suitable op amp is the AD OP-27. The magnitude of the largest glitch when using this device to drive the analog input is typically 1mV with a 200ns settling time.

Suitable devices capable of driving the AD7572 analog inputs are the AD OP-27 and AD711 op amps and the AD595 sample-and-hold.

INTERNAL CLOCK OSCILLATOR

Figure 7 shows the AD7772 internal clock circuit. A crystal or ceramic resonator may be connected as in Figure 7 to provide a clock oscillator for the ADC timing. Resistors R1 and R2 ensure that the CLKIN mark/space ratio stays between 45/55 and 55/45. Alternatively, the crystal/resonator may be omitted and an external clock source connected to CLKIN. The mark/space ratio of the external clock must be in the range 45/55 to 55/45. An inverted CLKIN signal will appear at the CLKOSC output pin.

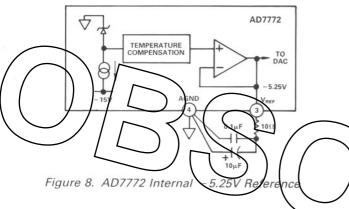

**C1 AND C2 CAPACITANCE VALUES DEPEND ON CRYSTAL/CERAMIC RESONATOR MANUFACTURER. TYPICAL VALUES ARE FROM 30pf TO 100pf.

Figure 7. AD7772 Internal Clock Circuit

INTERNAL REFERENCE

The AD7772 has an on-chip, buffered, temperature compensated, buried Zener reference, which is factory trimmed to $-5.25V \pm 1\%$. It is internally connected to the DAC and is also available at Pin 3 to sink up to 550μ A current from an external load.

For minimum code transition noise, the reference output should be decoupled with a capacitor to filter out wideband noise from the reference diode ($10\mu F$ tantalum in parallel with 100nF ceramic). However, large values of decoupling capacitors can affect the dynamic response and stability of the reference amplifier. A 10Ω resistor in series with the decoupling capacitors will eliminate this problem without adversely affecting the filtering effect of the capacitors. A simplified schematic of the reference with its recommended decoupling components is shown in Figure 8.

APPLYING THE AD7772

The AD7772 has a flexible input stage with application resistors which can be configured for various analog input ranges. The following sections show the AD7772 configured for these ranges.

UNIPOLAR OPERATION

Figure 9 shows the AD7772 connected for the unipolar 0 to +5V input range. The ideal input/output characteristic for this range is given in Figure 10. The designed code transitions occur midway between successive integer LSB values (i.e., 1/2LSB, 3/2LSBs, 5/2LSBs . . .FS – 3/2LSBs). The output code is straight binary (see Table I) with an LSB size of FS/4096 = 5/4096V = 1.22mV. To change to complementary binary coding, NOR/CMP should be tied to +5V.

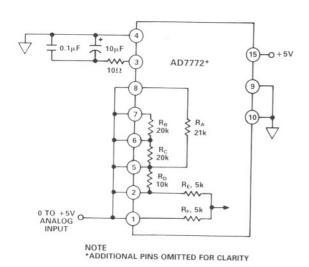


Figure 9. Unipolar 0 to +5V Input Range

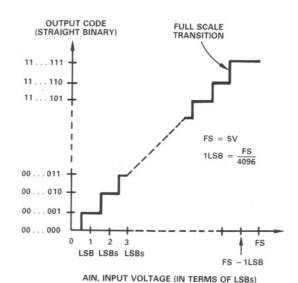


Figure 10. Ideal Input/Output Transfer Characteristic for

Figure 11 shows how the AD7772 can be connected for a 0 to +10V input range. The +5V pin is now connected to 0V, thereby attenuating the input by 2 and effectively doubling the analog input range. The analog input is applied to the +10V pin. For this circuit, the LSB size is FS/4096 = 10/4096V =

Figure 9

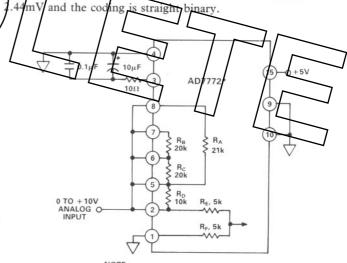


Figure 11. AD7772 in 0 to + 10V Analog Input Range

ADDITIONAL PINS OMITTED FOR CLARITY

UNIPOLAR OFFSET AND FULL SCALE ERROR ADJUSTMENT

If absolute accuracy is an application requirement, then offset and full scale error can be adjusted to zero. Offset error must be adjusted before full scale error. Figure 12 shows the extra components required for full scale error adjustment. The analog input range is 0 to $+5\mathrm{V}$ and the coding is straight binary. Zero offset is achieved by adjusting the offset of the op amp driving the analog input (i.e., A1 in Figure 12). For zero offset error apply $0.61\mathrm{mV}~(+1/2\mathrm{LSB})$ to $\mathrm{V_{IN}}$ and adjust the op amp offset voltage until the ADC output code flickers between 0000 . . . 0001.

To adjust the full scale error, apply an analog input of 4.99817V (FS – 3/2LSBs) to $V_{\rm IN}$ and adjust R1 until the ADC output code flickers between 1111 . . . 1110 and 1111 . . . 1111.

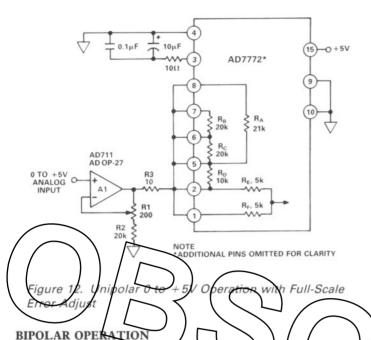


Figure 13 shows the circuit configuration for implementing \pm 5V and \pm 10V analog input voltages on the AD7772. R_A and R_D offset the input signal by a constant \pm 2.5V while R_C and R_D provide attenuation for the \pm 5V input. R_B , R_C and R_D provide attenuation for the \pm 10V input. If a \pm 5V input range is needed, the input signal should be applied to Pin 6 (\pm 5V) and Pin 7 left unconnected. For a \pm 10V input range, apply the signal to Pin 7 (\pm 10V) and leave Pin 6 open circuit. The output code format is offset binary. Figure 14 shows the ideal input/output characteristic for the \pm 5V input range.

Figure 13. AD7772 Connected for ±5V/±10V Input Range

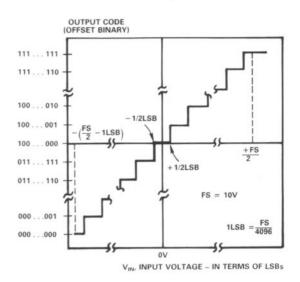


Figure 14. Ideal Input/Output Transfer Characteristic for the Bipolar Circuit of Figure 13

BIPOLAR OFFSET AND FULL SCALE ERROR

In the surement applications where absolute accuracy is required, offset and full scale error can be adjusted to zero. Figure 15 shows how the \pm 5V input range circuit is modified to do this. By placing R3 in parallel with the op amp feedback resistance R_D and the R1, R2 combination in parallel with R_C, an adjustment range of \pm 16LSBs is possible.

Bipolar zero error must be adjusted before full scale error. This is achieved by applying an analog input of +1.22mV (+1/2LSH) at the ±5 V input pin and adjusting the op amp offset until the ADC output code flickers between $1000 \dots 0000$ and $1000 \dots 0001$.

For full scale error adjustment, the analog input must be at 4.99878 volts (i.e., FS/2 - 1/2LSB or last transition point). Then R1 is adjusted until the output code flickers between 1111 . . . 1110 and 1111 . . . 1111.

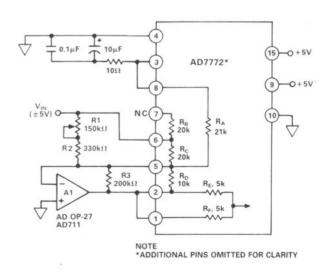


Figure 15. AD7772 Connected for \pm 5V Input Range with Full-Scale Error Adjust

INTERFACING

The AD7772 is a serial output device, making it suitable for use with digital signal processors which have a serial port (TMS32020, DSP56000, etc.) as well as microcontrollers (8051, 6803) and shift registers. See Figure 4 for the timing diagram. The serial data is placed on the SD0 pin as conversion is taking place. Each data bit is valid on the falling edge of SCLK, and the complete word is framed by the SYNC pulse.

TMS32020/TMS320C25 INTERFACE

Figure 16 shows the circuit for interfacing the AD7772 to the TMS32020/TMS320C25 Serial Port. The AD7772 has \$\overline{CS}\$ tied permanently low. In a sampling system, the SAMPLE TIMER would control the start of conversion. When the system is non-sampling, this CONVST pulse could be software-controlled by the processor. When conversion begins, the \$\overline{SYNC}\$ output goes low. This enables the serial input of the TMS32020/TMS320C25 which now accepts the data appearing at DR on each negative-going edge of CLKR. After sixteen CLKR pulses the internal interrupt (RINT) is automatically set. The service routine for this interrupt then reads the conversion result from the DRR (data receive register) into the accumulator or memory. Note that the word in the DRR must be shifted right three times in order to get the

Figure 16. AD7772 to TMS32020/TMS320C25 Interface

*LINEAR CIRCUITRY OMITTED FOR CLARITY

CLKIN

SCLK

SDO

SYNC

standard right-justified data format. This is also the case in the other processor interfaces which follow.

NEC μPD7720/μPD77230 INTERFACE

CLKE

DR

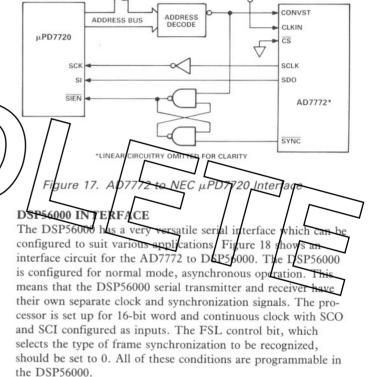

FSF

Figure 17 shows an interface circuit for the NEC μ PD7720 digital signal processor. Unlike the FSR input on the TMS320 processors, the \overline{SIEN} input on the μ PD7720/ μ PD77230 is level sensitive rather than edge sensitive. Because the processor can only be configured for either 8-bit or 16-bit data transfers, the \overline{SIEN} input to the μ PD7720/ μ PD77230 must be at least 16 clock pulses wide to receive the 12-bit conversion result from the AD7772. The circuitry of Figure 17 accomplishes this by using the CONVST and \overline{SYNC} signals as the set and reset controls on an S-R flip-flop.

In Figure 17 the processor controls the start of conversion. $\overline{\text{CS}}$ is tied low, and the output of the address decoder drives CONVST.

Data bits are shifted into the μ PD7720 on the rising edge of SCK when \overline{SIEN} is asserted. This means that SCLK from the AD7772 must be inverted before connecting to the SCK input. The internal shift register converts the serial data to parallel and transfers it to the SI register when 16 bits have been received. The internal acknowledge flag, SIACK, is also set at this time. When the parallel data is read from the SI register, this SIACK flag is reset. It is important to read the data from the SI register before the next conversion is complete and the data bits transferred; otherwise the original data will be lost.

When interfacing to the μ PD77230, the inverter for SCLK shown in Figure 17 is not needed, since data on SI is synchronized with the falling edge of SICK (the serial input clock). Thus, SCLK from the AD7772 is connected directly to SICK on the μ PD77230. All other connections are as in Figure 17.

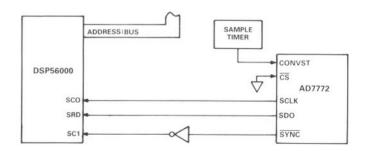


Figure 18. AD7772 to DSP56000 Interface

When the receiver is enabled, a 16-bit data word will be clocked in each time the frame synchronization signal is detected. Once received, the data word will be transferred from the SSI receive shift register to the receive data register (RX). The RDF flag (receive data register full flag) will be set to indicate that the receiver is full and the receive interrupt will occur if it has been enabled. The DSP program should read the data from RX before a new data word is transferred from the receive shift register, otherwise the receive overrun error (ROE) will be set.

AD7772 IN REMOTE CONTROL APPLICATIONS

Figure 19 shows a serial interface between the AD7772 and a remote controller. The digital signals are transmitted differentially along twisted pairs while optocouplers sense the signals at the receiving end. The DS8830 is a dual differential line driver, designed to drive long lengths of coaxial cable, strip line or twisted pair transmission lines. The optocouplers used are HCPL-2601s, which have sufficient speed (1000V/μs slew rate) to handle the maximum data transfer rate of 1.28M bits/sec.

The AD7772 is set up so that only one signal (CONVST) is needed to start conversion. Three twisted pairs are needed to transfer the data back to the controller. These take the SCLK, SDO and \$\overline{\text{SYNC}}\$ signals.

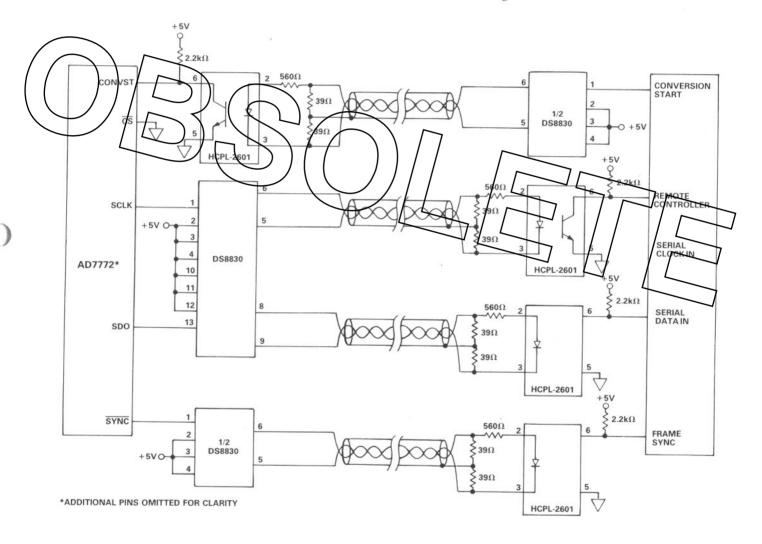


Figure 19. Using Optocouplers with the AD7772

AD7772 – AD585 SAMPLE-HOLD INTERFACE

Figure 20 shows a typical sampling application for the AD7772 with an AD585 sample-and-hold amplifier driving the ADC analog input. The AD585 is configured as a unity gain buffer. The \pm 10V input signal is successively sampled and held and this signal is then fed to Pin 7 of the AD7772 which is connected for an analog input range of \pm 10V.

For the circuit of Figure 20 to function properly, it is necessary to have the CONVST signal for the ADC synchronized with CLKIN as discussed previously. This ensures that the analog input is always held at a fixed point in time after the CONVST signal goes high and equal interval sampling is achieved. Without this synchronization, the holding point would not be exactly defined and the data acquisition system performance would suffer accordingly.

The maximum throughput rate of the system shown in Figure 20 is 76kHz. 10µs is required for conversion while a further 3µs must be allowed for the AD585 to acquire the signal. This yields a total time of 13µs. Thus, the maximum sampling rate is 76kHz and the analog input bandwidth is 38kHz.

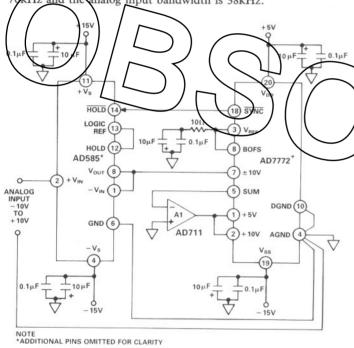


Figure 20. AD7772 Sample-and-Hold Interface

APPLICATION HINTS

Good printed circuit board (PCB) layout is as important as the circuit design itself in achieving high speed A/D performance. The AD7772's comparator is required to make bit decisions on an LSB size of 1.22mV. To achieve this, the designer has to be conscious of noise both in the ADC itself and the preceding analog circuitry. Switching mode power supplies are not recommended as the switching spikes will feed through to the comparator causing noisy code transitions. Other causes of concern are ground loops and digital feedthrough from microprocessors. These are factors which influence any ADC, and a proper PCB layout which minimizes these effects is essential for best performance.

LAYOUT HINTS

Ensure that the layout for the printed circuit board has the digital and analog signal lines separated as much as possible. Take care not to run any digital track alongside an analog signal track. Guard (screen) the analog input with AGND.

Establish a single point analog ground (star ground) separate from the logic system ground at Pin 4 (AGND) or as close as possible to the AD7772 as shown in Figure 21. Connect all other grounds and Pin 10 (AD7772 DGND) to this single analog ground point. Do not connect any other digital grounds to this analog ground point. Low impedance analog and digital power upply common returns are essential to low noise operation of the ADC to make the foil width for these tracks as wide as possible. The use of ground planes minimizes impedance paths while guarding the analog circuitry from digital noise. The circuit layout of Figures 24 and 25 have both analog and digital ground planes which are kept separate and only joined together at the AD7772 AGND pin.

NOISE: Keep the input signal leads to the analog input and signal return leads from AGND (Pin 4) as short as possible to minimize input noise coupling. In applications where this is not possible use a shielded cable between the source and the ADC. Reduce the ground circuit impedance as much as possible, since any potential difference in grounds between the signal source and the ADC appears as an error voltage in series with the input signal.

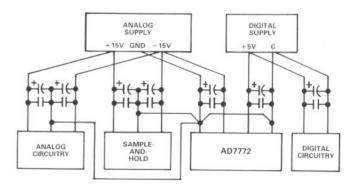
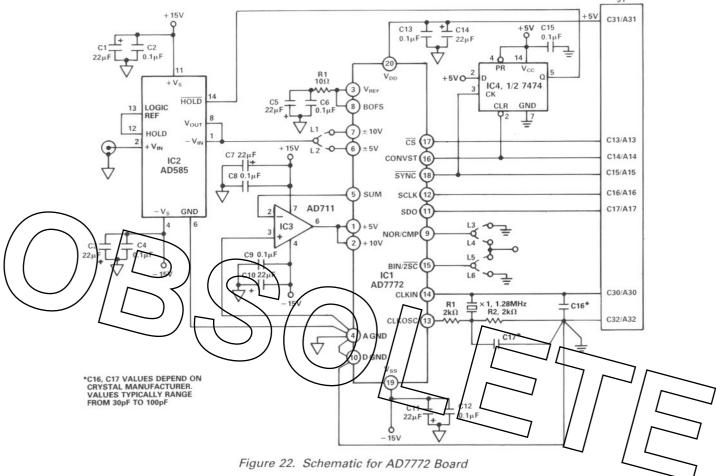
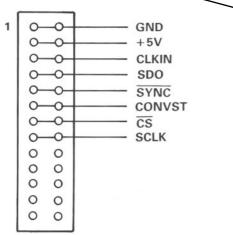



Figure 21. Power Supply Grounding Practice

PRINTED CIRCUIT BOARD LAYOUT


Figure 22 is a circuit diagram showing the AD7772 being used to digitize an analog signal. The circuit board contains the ADC, sample-and-hold and extra op amp necessary to sample a bipolar input signal. Links L1 and L2 allow the user to choose a $\pm 5V$ or $\pm 10V$ analog input range. With L1 inserted the range will be $\pm 10V$, and with L2 inserted it will be $\pm 5V$.

The AD585 is the input sample-and-hold. Its HOLD input is driven from IC4 (1/2 7474 D-type flip-flop). The input signal is sampled at the end of conversion, when SYNC goes high and is held when the CONVST signal goes low. To make sure that the sample-and-hold has enough time to acquire the input signal, the time from sample-and-hold should be at least 3µs. Links L3, L4, L5 and L6 allow the user to choose the output code format for the device. See Table I for the output code truth table.

The PCB layout is designed so that all external connections except the $V_{\rm DD}$ and $V_{\rm SS}$ power supplies can be made in any of three ways:

- 1. 32-way single-sided edge connector.
- 2. Eurocard connector, J1.
- 3. 26-pin plug, J2.

The pinout for the 26-way connector is shown in Figure 23, and the other pinouts are shown in Figure 22. The $V_{\rm DD}$ and $V_{\rm SS}$ power supplies are connected at the top of the board (see Figure 26).

J2: 26-WAY IDC PLUG

Figure 23. J2 Pin Configuration

The printed circuit board layout is shown in Figure 24 and 25. Figure 24 is the component side layout and Figure 25 is the solder side layout. The component overlay is shown in Figure 26. In the layout, the STAR ground point is located at Pin 4 (AGND). Pin 10 (DGND), the AD585 ground, AD711 ground and the ground plane are connected directly to this point.

To ensure optimum performance, the AD7772 power supplies are decoupled as shown. The $V_{\rm REF}$ pin is decoupled with R1, C5 and C6. All ADC decoupling capacitors are placed as close as possible to the device.

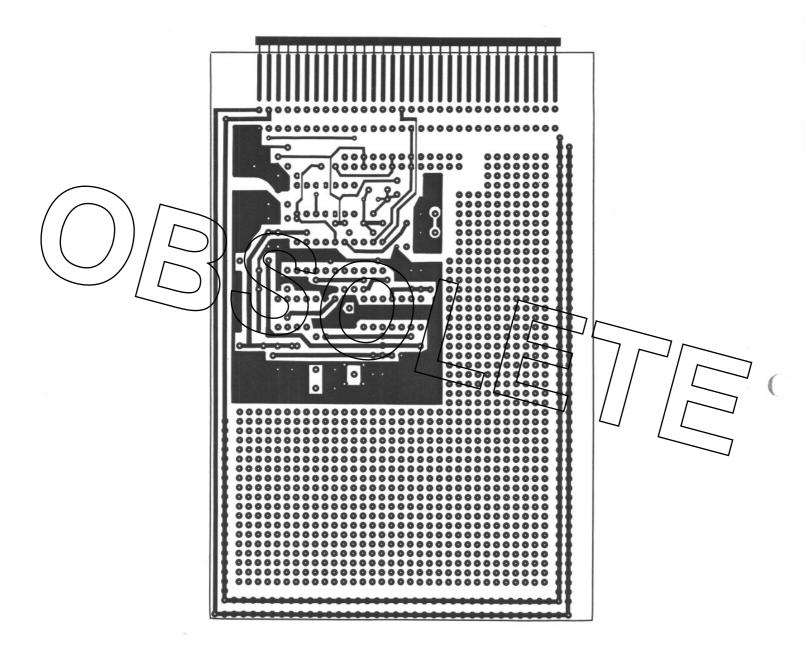


Figure 24. PCB Component Side Layout for Figure 22

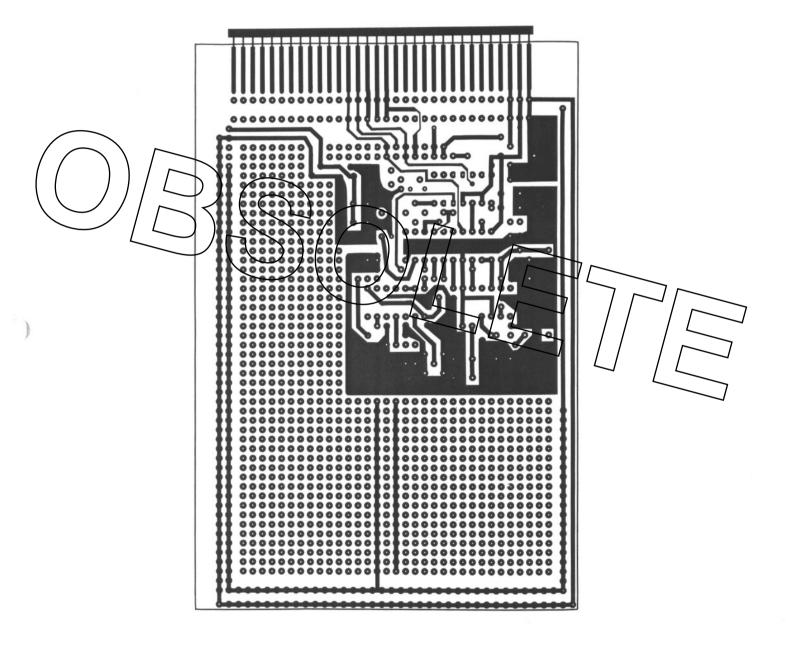


Figure 25. PCB Solder Side Layout for Figure 22

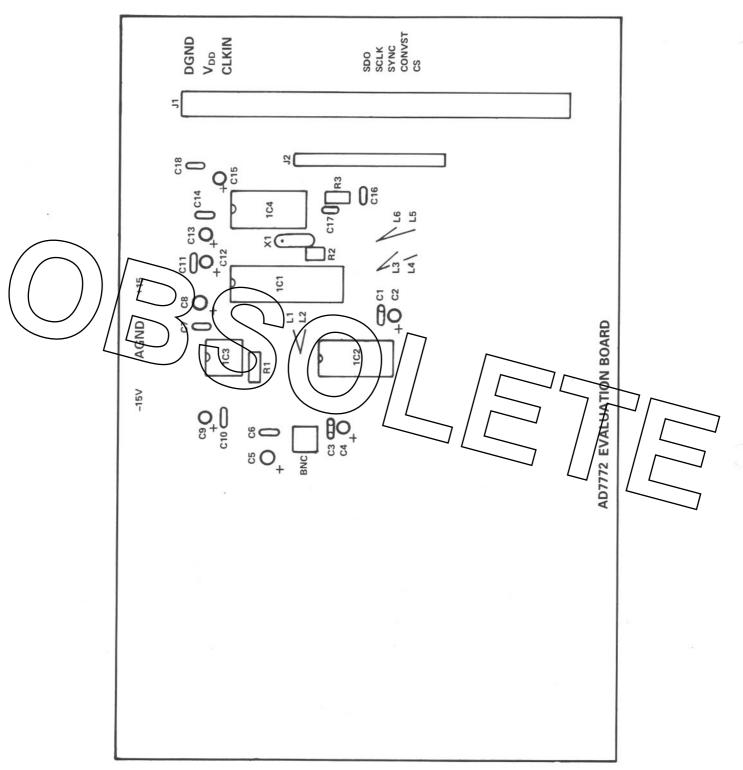


Figure 26. Component Overlay for Circuit of Figure 22