

13-Bit Monolithic A/D Converter

AD7550

FEATURES

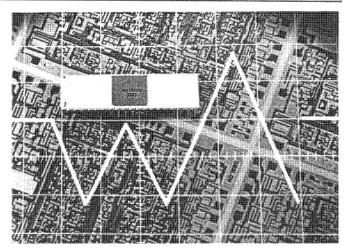
Resolution: 13 Bits, 2's Complement

Relative Accuracy: ±1/2LSB
"Quad Slope" Precision
Gain Drift: 1ppm/°C
Offset Drift: 1ppm/°C

Microprocessor Compatible

Ratiometric Overrange Flag

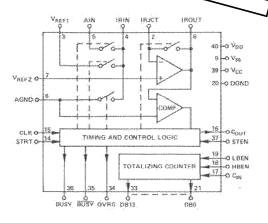
Very Low Power Dissipation TTL/CMOS Compatible


CMOS Monolithic Construction

GENERAL DESCRIPTION
The AD7550 is a 13-bit 2's complement) monolithic CMOS analog-to-digital converter on 1 1/8 x 125 mil die packaged in a 40-pin ceramic DIP. Outstanding accuracy and stability (1ppm/°C) is obtained due to its revolutionary integrating technique, called "Quad Slope" (Analog Devices patent No. 3872466). This conversion consists of four slopes of integration as opposed to the traditional dual slope and provides much higher precision.

The AD7550 parallel output data lines have three-state logic and are microprocessor compatible through the use of two enable lines which control the lower eight LSB's (low byte enable) and the five MBS's (high byte enable). An overrange flag is also available which together with the BUSY and BUSY flags can be interrogated through the STATUS ENABLE providing easy microprocessor interface.

The AD7550 conversion time is about 40ms with a 1MHz clock. Clock can be externally controlled or internally generated by simply connecting a capacitor to the clock pin. A positive start pulse can be self-generated by having a capacitor on the start pin or can be externally applied.


For most applications, the AD7550 needs only three resistors, one capacitor, and a reference voltage since the integrating amplifier, comparator, switches and digital logic are all on the CMOS chip.

A wide range of power supply voltages (±5V to ±12V) with minuscule current requirements make the AD7550 ideal for low power and/or battery operated applications. Selection of the logic (V_C) supply voltage (+5V to V_{DD}) provides direct TTL or QMOS interface on the digital input/output lines.

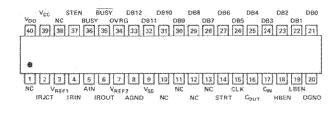
The AD7550 uses a high density CMOS process featuring double layer metal and silicon nitride passivation to ensurhigh reliability and long term stability

FUNCTIONAL DIAGRAM

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way; P. O. Box 9106; Norwood, MA 02062-9106 U.S.A. Tel: 617/329-4700 Twx: 710/394-6577

Telex: 174059 Cables: ANALOG NORWOODMASS

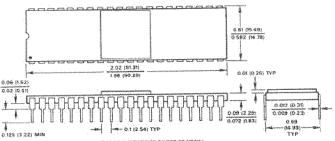

SPECIFICATIONS (VDD = +12V, VSS = -5V, VCC = +5V, VREFt = +4.25V unless otherwise noted)¹

ARAMETER	TA = +25°C	OVER SPECIFIED TEMPERATURE RANGE	TEST CONDITIONS			
CCURACY Resolution Accuracy of Reading (Including Noise)	±21.SB max	13 Bits 2's Comp min ±2LSB max	$f_{CLK} = 500 \text{kHz}$, $R1 = 1 \text{M}\Omega$. $C1 = 0.01 \mu\text{F}$ 99% of conversions meet this specification			
Noise (Flicker)	±2LSB max ±3LSB max	±2LSB max ±3LSB max	From nominal reading, not exceeded 99% of time From nominal reading, not exceeded 100% of time			
Gain Error Gain Error Drift Offset Error Offset Error Offset Error Drift	±1LSB max 1ppm/°C typ ±0.5LSB max 1ppm/°C typ					
NALOG INPUTS AIN Input Resistance ² V _{REF1} Input Resistance ² V _{REF2} Leakage Current	R1MΩ min RIMΩ min 10pA typ					
OIGITAL INPUTS CIN, LBEN, HBEN, STEN VINL VINH VINE VINE VINE VINE VINE VINE VINE VINE	+0.8V max +2.4V min +1.2V max +10.8V min 5nA typ	+0.8V max +2.4V min +1.2V max +10.8V min	$V_{CC} = +5V$ $V_{CC} = +12V$			
STACT VINIL VINH I _{IN} I _{IN}	+0.8V min +3 V min -34A Vp +1604A vp	+0.8V max +3.0V min	$V_{CC} = +5V \text{ to } V_{DD}$ $V_{CC} = +5V \text{ to } V_{DD} \text{ BUSY} = \text{Low.}$ $V_{CC} = +5V \text{ to } V_{DD} \text{ BUSY} = \text{High.}$			
CLOCK VINL VINH VINL VINH INL	+0.8V max +3Vmin 1.2V max +10.8V min -100µA tvp +100µA tvp	+0.8V max +3V min +1.2V max +10.8V min	$V_{CC} = +5V$ $V_{CC} = +12V$ $V_{IN} = V_{NL}$; $V_{CC} = +5V$ to $+12V$ $V_{IN} = V_{INH}$; $V_{CC} = +5V$ to $+12V$			
INH DIGITAL OUTPUTS VOUTL VOUTH VOUTH Capacitance (Floating State)	+0.5V max +2.4V min +1.2V max +10.8V min 5pF typ	+0.8V max +2.4V min +1.2V max +10.8V min	V _{CC} = +5V, l _{SINR} = 1.6mA V _{CC} = +5V, l _{SURCE} = 40µA V _{CC} = +12V, l _{SINK} = 1.6mA V _{CC} = +12V, l _{SOURCE} = 0.6mb			
(OVRG, BUSY, BUSY, and DB0-DB12 ILKG (Floating State) (OVRG, BUSY, BUSY, and DB0-DB12)	±5nA typ		V _{CC} = +5V to +12V V _{OUT} = 0V and V _{CC}			
DYNAMIC PERFORMANCE	90ms typ		$V_{IN(CLK)} = 0 \text{ to } +3V,$ $f_{CLK} = 500\text{kHz}$			
Conversion Time	40ms typ		$V_{\text{IN}(\text{CLK})} = 0 \text{ to } +3V$, $f_{\text{CLK}} = 1\text{MHz}$			
STEN, HBEN, LBEN Propagation Delay t _{ON} , t _{OFF}	250ns typ, 500ns max		V _{IN} (STEN, HBEN, LBEN) 0 to +3V			
External STRT Pulse Duration	800ns min	general control of the control of th	$V_{IN}(STRT) = 0$ to +3V			
POWER SUPPLIES V _{DD} Range V _{SS} Range V _{CC} Range l _{DD} l _{SS} l _{CC}	+10V min, +12V max -5V min, -12V max +5V min, V _{DD} max 0.6mA typ, 2mA max 0.3mA typ, 2mA max 0.06mA typ, 2mA max		f _{CLK} = 1MHz			

Full Scale Voltage = ±V_{REF1} + 2.125. For V_{REF1} = +4.25V, FS voltage is ±2.000V.

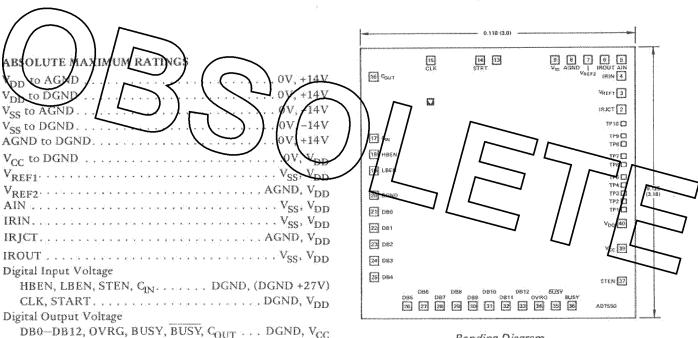
The equivalent input circuit is the integrator resistor R₁ (1MM min, 10MM max) in series with a voltage source $\frac{V_{REF1}}{2}$, (see Figure 1). Specifications subject to change without notice.

PIN CONFIGURATION



ORDERING INFORMATION

Model	Temperature Range	Package
AD7550BD	-25°C to +85°C	Ceramic


OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

LEAD NO. 1 IDENTIFIED BY BOT OR NOTCH LEADS WILL BE EITHER GOLD OR TRIPLATED IN ACCORANDANCE WITH WILLINGBID REQUIREMENTS.

40-Pin Ceramic Dip

Bonding Diagram

CAUTION:

Power Dissipation (Package)

1. The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times. Prior to pulling the devices from the conductive foam, ground the foam to deplete any accumulated charge.

 Up to +50°C
 .1000mW

 Derates above +50°C by
 .10mW/°C

 Storage Temperature
 .-65°C to +150°C

 Operating Temperature
 .-25°C to +85°C

 V_{CC} should never exceed V_{DD} by more than 0.4V, especially during power ON or OFF sequencing.

PIN	MNEMONIC	DESCRIPTION
1	NC-	No Connection
2	IRJCT	IntegratoR JunCTion. Summing junction (negative input) of integrating amplifier.
3	V_{REF1}	Voltage REFerence Input
4	IRIN	IntegratoR INput: External integrator input R is connected between IRJCT and IRIN.
5	AIN	Analog INput. Unknown analog input voltage to be measured. Fullscale AIN equals V _{REF} /2.125.
6	IROUT	Integrator OUTput, External integrating capacitor C ₁ is connected between IROUT and IRJCT.
7	$V_{ m REF2}$	Voltage REFerence ÷ 2 Input
8	AGND	Analog GrouND
9	V_{SS}	Negative Supply (-5V to -12V)
10	NC	No Connection
11	NC	No Connection
12	NC	No Connection
13	NC	No Connection
14	STRT	STaRT Conversion. When STRT goes to a Logic "1," the AD7550's digital logic is set up and
* *.		BUSY is latched "high." When STRT returns "low," conversion begins in synchronization with
		CLK. Reinitiating STRT during conversion causes a conversion restart. STRT can be driven from
		an external logic source or can be programmed for continuous conversion by connecting an
		external capacitor between STRT and DGND. An externally applied STRT command must be
		a positive pulse of at least 800 nanoseconds to ensure proper set-up of the AD7550 logic.
15	CLK	CLock Input. The CLK can be driven from external logic, or can be programmed for internal
/		oscillation by connecting an external capacitor between CLK and DGND.
16	four /	Count OUT provides a prante: (N) of gated clock pulses given by:
- 1		MN 2,25 1 4096_
		Verify)
17		Court IN is the input to the utput counter 2's complement binary data appears on the DB0
		through DB12 of the tipe (if the HBEN and LBEN enable lines are "high") if COUT is con-
1.0	HBEN	Mich Price Falchie in the state of the falchies of the falchie
18	FIDEIN	High Byte ENable is the three-start logic enable input for the DB8-DB12 data but puts. When HBEN is low, the DB8-DB12 outputs are floating. When HBEN is "high," digital data appears
		on the data lines.
19	LBEN	
**	10114.	Low Byte ENable is the three-state logic enable for DBO-DB7. When LBEN & "low, BBO-DB7 are floating. When "high," digital data appears on the data lines.
20	DGND	
		Digital GrouND is the ground return for all digital logic and the comparator.
21	DB0	Data Bit 0 (least significant bit)
22	DB1	
23 24	DB2 DB3	
25		
26	DB4 DB5	
27	DB6	CODE: 2's Complement
28	DB7	CODE: 25 Comprehence
29	DB8	
30	DB9	
3.1	DB10	
32	DB11	
3.3	DB12	Data Bit 12 (most significant bit)
34	OVRG	OVerRange indicates a Logic "1" if AlN exceeds plus or minus full scale by at least 1/2 LSB.
	*	OVRG is a three-state output and floats until STEN is addressed with a Logic "1".
3.5	BUSY	Not BUSY. BUSY indicates whether conversion is complete or in progress. BUSY is a three-
		state output which floats until STEN is addressed with a Logic "1." When addressed, BUSY
		will indicate either a "1" (conversion complete) or a "0" (conversion in progress).
36	BUSY	BUSY indicates conversion status. BUSY is a three-state output which floats until STEN is
		addressed with a Logic "1." When addressed, BUSY indicates a "0" (conversion complete) or a
		"1" (conversion in progress).
37	STEN	STatus ENable is the three-state control input for BUSY, BUSY, and OVRG.
38	NC	No Connection
39	V _{CC}	Logic Supply. Digital inputs and outputs are TTL compatible if V _{CC} = +5V, CMOS compatible
	~~	for $V_{CC} = \pm 10V$ to V_{DD} .
40	V_{DD}	Positive Supply +10V to +12V.
	mc det	

PRINCIPLES OF OPERATION

BASIC OPERATION

The essence of the quad slope technique is best explained through Figures 1 and 2.

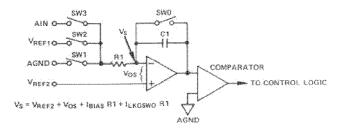


Figure 1. Quad Slope Integrator Circuit

The inputs AGND (analog ground), $V_{\rm REF1}$ and AIN (analog input) are applied in sequence to an integrator (Figure 1), creating four slopes (phases 1 through 4, Figure 2) at the integrator output Voltage $V_{\rm S}$ is ideally equal to $\frac{V_{\rm REF1}}{2}$, but if not, will create an error count "n" that will be minimized by the "quad-slope" conversion process $V_{\rm REF1}$ and $V_{\rm REF2}$ must be positive voltages.

The equivalent integrator input voltages and their integration times are shown in Table 1.

TABLE I.

INTEGRATOR EQUIVALENT INPUT VOLTAGES
AND INTEGRATION TIMES

Phase	Input Voltage	Integration Time
1	AGND-V _S	$t_1 = K_1 t$
2	V _{REF1} -V _S	$t_2 = (K_1 + n)t$
3:	AIN-V _S	$t_3 = (2K_1 - n)t$
4	$v_{REF1}-v_{S}$	$t_4 = (K_3 - 2K_1 + n - 2N)t$

NOTE: Ideally $V_S = V_{REF2} = 1/2 V_{REF1}$

where:

t = The CLK period

n = System error count

 K_1 = A fixed count equal to 4352 counts

 $K_2 = A$ fixed count equal to 17408 counts ($K_2 = 4K_1$)

K3 = A fixed count equal to 25600 counts

N = Digital output count corresponding to the analog input voltage, AIN

PHASE 0

After the start pulse is applied, switch SW2 is closed (all other switches open) and the integrator output is ramped to comparator zero crossing. Phase 0 can be considered the reset phase of the converter, and always has a duration to = R₁C₁ (integrator time constant). Upon zero crossing, counters K₁ and K₂ are started, switch SW2 is opened and SW1 is closed.

PHASE 1

Phase 1 integrates (AGND $-V_S$) for a fixed period of time (by counter K_1) equal to $t_1 = K_1t$. At the end of phase 1, switch SW1 is opened and SW2 is closed.

PHASE:

The integrator input is switched to $(V_{REF1} - V_S)$ and the output ramps down until zero crossing is achieved. The integration time $t_2 = (K_1 + n)t$ includes the error count "n" due to offsets fee. At the end of phase 2, switch SW2 is opened, SW3 is closed, and a third counter (K_3) is started.

PMASE 3 Phase 3 Integrates the analog input (AIN $-V_S$) until counter K_2 counts $4K_1t$. At this time SW3 is opened and SWE is closed again.

PHASE 4.

Phase 4 integrates (V_{REF1} — V_s) and the comparator butput ramps down until zero crossing once again is achieved. Since the comparator always approaches zero crossing from the same slope, propagation delay is constant and hysteresis effect is eliminated.

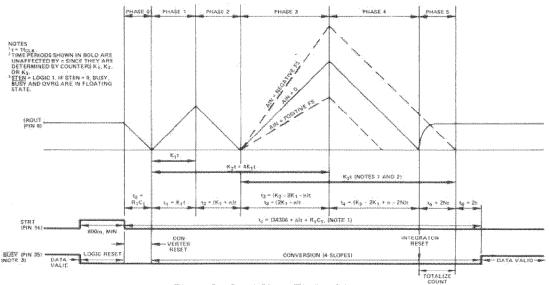


Figure 2. Quad Slope Timing Diagram

The time t5 between the phase 4 zero crossing and the termination of counter K3 is considered equal to 2N counts. N, the number of counts at the C_{OUT} terminal, is obtained by a divide-by-two counter stage. This reduces "jitter" effect. Barring third (and higher) order effects, it can be proven that:

$$N = \left(\frac{AIN}{V_{REF1}} - 1\right) \cdot 2K_1 + \frac{K_3}{2} + \left(\frac{AIN}{V_{REF1}} - 1\right) \cdot \left[\frac{AGND}{V_{REF1}} \left(1 + 2\alpha\right) - \alpha^2\right] \cdot 2K_1$$

ideal transfer function

error term

where:

$$\alpha = \frac{2V_S - V_{REF1}}{V_{REF1}}$$

The ideal case assumes:

AGND = 0V
$$V_S = \frac{V_{REF1}}{2}, \text{ therefore } \alpha = 0$$
 Then (EQN 1) simplifies as:
$$N = \frac{AIN}{V_{REF1}} \cdot 8/04 + 4096$$
 (EQN 2)
$$N = \frac{AIN}{V_{FS}} \cdot 4096 + 4096$$
 where:
$$V_{REF1}$$

 V_{FS} = full scale input voltage = $\frac{V_{REF1}}{2.125}$

The parallel output (DB0-DB12) of the AD7550 represents the number N in binary 2's complement coding when the C_{OUT} pin is connected to the C_{IN} pin (see Table II).

TABLE II
OUTPUT CODING (Bipolar 2's Complement)

Analog Input	Input N Parallel Digita				d Output			
(Note 1)	(Note 2)	(Note 3)						
		OVRG	DB12				DBC)
+Overrange	200	1	0	1 1	11	1111	1 1 1 1	pane
+VFS (1-2 ⁻¹²)	8191	0	0	1.1	1.1	1.111	1111	
+VFS (2-12)	4097	0	0	0.0	0.0	0.0.0.0	1000	
0	4096	0	0	0.0	0.0	0000	0 0 0 0	
-VFS (2 ⁻¹²)	4095	0	1	11	1.1	1 1 1 1 1	1111	
-VFS	- 0	0	1	0.0	0.0	0.000.0	0000	
-Overrange		1	1	.0.0			0 0 0 0	
- manipulation of the contraction of the contractio	konnewiosjospierusjosioi	jamanna paramana na 	ستعملنو سامساه فاطعت	and a second		and and the farmer of the property of the party of		dente.

Notes VDE

- $V_{FS} = \frac{1}{2.125}$
- 2 N = number of counts at COUT pin
- 3 COUT strapped to CIN; LBEN, HBEN and STEN = Logic 1

ERROR ANALYSIS

Equation 1 shows that only α and AGND generate error terms. Their impact can be analyzed as follows:

Case 1: AGND =
$$0, \alpha \neq 0$$

Error sources such as capacitor-leakage (I_L) and op amp offset (e) cause α to be different from zero.

Under this condition,

$$\alpha = \frac{2 (e + l_L R_1)}{V_{REF1}}$$

where I_LR_1 is the equivalent error voltage generated by leakage I_L .

The evaluation of this error term is best demonstrated through the following example:

Assume:

$$e = 5 \text{mV}$$
, $I_L = 5 \text{nA}$, $R_1 = 1 \text{M}\Omega$ and $V_{REF1} = 4.25 \text{V}$.

Then:

$$\alpha = 4.7 \times 10^{-3}$$

and:

$$N = \left[\frac{A1N}{V_{REF1}} - 1\right] \times 8704 + 12800 - \left[\frac{A1N}{V_{REF1}} - 1\right] \times 22.1 \times 10^{-6} \times 8704$$
error term N_o

Therefore, the error count N_{ϵ} is as follows:

For AIN =
$$-V_{FS}$$
: $N_e = 0.28$ counts = 0.28LSB
AIN = 0: $N_e = 0.19$ counts = 0.19LSB
AIN = $+V_{FS}$: $N_e = 0.09$ counts = 0.09LSB

The above example shows the strong reduction of the circuit errors because of the α^2 term in (FON 1 Another consequence of this effect is that N_ϵ is always positive, regardless of the polarity of the circuit errors.

Case 2: AGND $\neq 0$, $\alpha = 0$

When AGND is different from the signal ground, then this error will come through on a first-order basis. Indeed:

$$N = \begin{bmatrix} AIN \\ V_{REF1} \end{bmatrix} \cdot 8704 + 12800 + \underbrace{\begin{bmatrix} AIN \\ V_{REF1} \end{bmatrix}} \cdot 1 \cdot \underbrace{\begin{pmatrix} AGND \\ V_{REF1} \end{pmatrix}} \cdot 2K_{1}$$
error term N_{ϵ}

The following example demonstrates the impact of AGND.

Let AGND = 1 mV and $V_{REE1} = 4.25 \text{V}$.

For AIN =
$$-V_{FS}$$
, then N_{ϵ} = 3.01 counts
AIN = 0, then N_{ϵ} = 2.05 counts
AIN = + V_{FS} , then N_{ϵ} = 1.08 counts

Therefore, ground loops should be minimized because a 330µV difference between AGND and signal ground will cause 1 count (1 LSB) of error when the analog input is at minus full scale. An optimized ground system is shown in Figure 7.

OPERATING GUIDELINES

The following steps, in conjunction with Figure 3, explain the calculations of the component values required for proper operation.

1. DETERMINATION OF VREF1

When the full scale voltage requirement (VFS) has been ascertained, the reference voltage can be calculated by:

$$V_{REF1} = 2.125 (V_{FS})$$

V_{RFF1} must be positive for proper operation.

2. SELECTION OF C3 (INTERNAL CLOCK OPERATION)

For internal clock operation, connect capacitor C₃ to the clock pin as shown in Figure 3. The clock frequency versus capacitor C₃ is shown in Figure 4.

The clock frequency must be Imited to 13MNz for proper

3. SELECTION OF INTEGRATOR COMPONENTS (R) AND C1)

To ensure that the integrator's output doesn't saturate to its bound (V_{DD}) during the phase (3) integration cycle, the integrator time constant (R_1C_1) should be approximately equal to:

$$\pi = R_1C_1 = \frac{V_{REF1} (9 \times 10^3)}{f_{CLK} (V_{DD} - 4V)}$$

The integrator components R_1 and C_1 can be selected by referring to Figure 5 and/or Figure 6. Figure 5 plots the time constant (R_1C_1) versus clock frequency for different reference voltages. Figure 6 is a direct plot of the required C_1 versus f_{CLK} for R_1 values of $1M\Omega$ and $10M\Omega$.

 R_1 can be a standard 10% resistor, but must be selected between $1 M\Omega$ to $10 M\Omega.$

The integrating capacitor "C₁" must be a low leakage, low dielectric absorption type such as teflon, polystyrene or polypropylene. To minimize noise, the outside foil of C₁ must be connected to IR_{OUT}.

4. CONVERSION TIME

As shown in Figure 2, the conversion time is independent of the analog input voltage AIN, and is given by:

$$t_{convert} = t_{STRT} + \frac{34306}{f_{CLK}} + R_1C_1$$

where:

tSTRT = STRT pulse duration
R₁C₁ = Integrator Time Constant
f_{CLK} = CLK Frequency

For example, if $V_{\rm EEF1}$ = 4.25V, R_1 = 1M Ω , C_1 = 4,000pF and CLK = 1MHz, the conversion time (not including $t_{\rm STRT}$, which is normally only microseconds in duration) is approximately 40 milliseconds.

5. EXTERNAL OR AUTO STRT OPERATION

"1" to the STRT terminal,

The STRT pin can be driven externally, or with the addition of C2, made to self-start.

The size of C₂ determines the length of time from end of conversion until a new conversion is initiated. This is the "data valid" time and is given by:

t_{DAV} ≈ (1.7 x 10⁶Ω) C₂ + 20μs

When first applying power to the AD7550, a 0V to V_{DD} positive pulse (power up testatt) is required at the STRT terminal to initiate auto STRT operation.

6. INITIAL CALIBRATION

Trim R₄ (Figure 3) so that pin 2 (IRICT) equal 1/2 V_{REF1} ±0.6%. When measuring the voltage on IRICT, apply a Logic

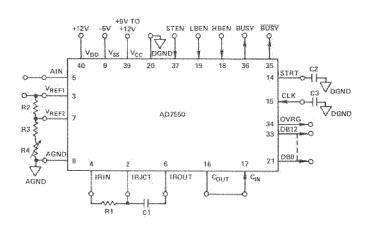


Figure 3. Operation Diagram

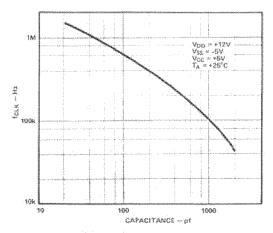


Figure 4. fCLK vs. C3

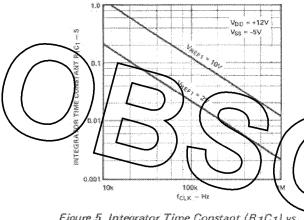


Figure 5, Integrator Time Constant (R₁C₁) vs. f_{CLK} for Different Reference Voltages

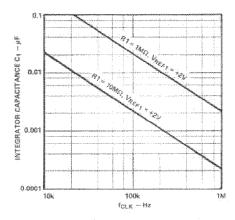
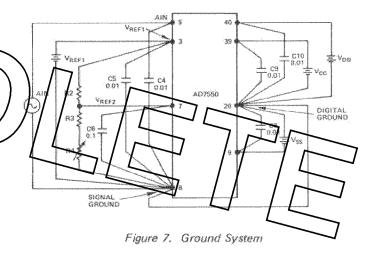



Figure 6. Integrator Capacitance (C1) vs. fCLK for Different Integrator Resistances (R1)

APPLICATION HINTS

When operating at $f_{\rm CLK}$ greater than 500kHz, the following steps are recommended to minimize errors due to noise coupling (see Figure 7).

- Decouple AIN (pin 5), V_{REF1} (pin 3) and V_{REF2} (pin 7) through 0.01µF to signal ground.
- Signal ground must be located as close to pin 8 (AGND) as possible.
- 3. Keep the lead lengths of R₁ and C₁ toward pin 2 (IRJCT) as short as possible. In addition, both components should lie over the analog ground plane. If C₁ has an outside foil, connect it to pin 6 (IROUT), not pin 2.
- 4. Hold the data bit enables (HBEN, LBEN) in the 0 state during conversion. This is easily accomplished by tying <u>STEN</u> to the 1 state and driving HBEN and LBEN with <u>BUSY</u>. This prevents the DB0 through DB12 outputs from coupling noise into the integrator during the phase 1-4 active integration periods.

